Latest News on full stack product engineering

AI Roadmap Workbook for Non-Technical Business Leaders


Image

A simple, practical workbook showing the real areas where AI adds value — and where it doesn’t.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.

Purpose of This Workbook


Modern business leaders face pressure to adopt AI strategies. Everyone seems to be experimenting with, buying, or promoting something AI-related. But many non-technical leaders are caught between extremes:
• Saying “yes” to every vendor or internal idea, hoping some of it will succeed.
• Saying “no” to everything because it feels risky or confusing.

It provides a third, smarter path — a clear, grounded way to find genuine AI opportunities.

Forget models and parameters — focus on how your business works. AI is only effective when built on your existing processes.

How to Use This Workbook


Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A realistic, step-by-step project plan.

Treat it as a lens, not a checklist. If your CFO can understand it in a minute, you’re doing it right.

AI strategy is just business strategy — minus the buzzwords.

Starting Point: Business Objectives


Start With Outcomes, Not Algorithms


The usual focus on bots and models misses the real point. Non-technical leaders should start from business outcomes instead.

Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which decisions are delayed because information is hard to find?

AI matters when it affects measurable outcomes like profit or efficiency. Only link AI to real, trackable business metrics.

Leaders who skip this step collect shiny tools; those who follow it build lasting leverage.

Step 2 — See the Work


Map Workflows, Not Tools


Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Pose one question: “What happens between X starting and Y completing?”.

Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent ? reminded ? paid.

Inputs, actions, outputs — that’s the simple structure. Ideal AI zones: messy inputs, repeatable steps, consistent outputs.

Rank and Select AI Use Cases


Evaluate Each Use Case for Business Value


Not every use case deserves action; prioritise by impact and feasibility.

Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.

Consider risk: some actions are reversible, others are not.

Begin with low-risk, high-impact projects that build confidence.

Laying Strong Foundations


Fix the Foundations Before You Blame the Model


Messy data ruins good AI; fix the base first. Ask yourself: Is the data 70–80% complete? Are processes well defined?.

Keep Humans in Control


Keep Azure people in the decision loop. As trust grows, expand autonomy gradually.

Avoid Common AI Pitfalls


Learn from Others’ Missteps


01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Automation Mirage — expecting overnight change.

Define ownership, success, and rollout paths early.

Working with Experts


Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.

Transparency about failures reveals true expertise.

Signs of a Strong AI Roadmap


How to Know Your AI Strategy Works


It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.

Essential Pre-Launch AI Questions


Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is the 3-month metric?
• What’s the fallback insight?

Conclusion


Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.

Leave a Reply

Your email address will not be published. Required fields are marked *